Quantum distributed deep learning architectures: Models, discussions, and applications

نویسندگان

چکیده

Although deep learning (DL) has already become a state-of-the-art technology for various data processing tasks, security and computational overload problems often arise due to their high power dependency. To solve this problem, quantum (QDL) distributed (DDL) emerged complement existing DL methods. Furthermore, (QDDL) technique that combines maximizes these advantages is getting attention. This paper compares several model structures QDDL discusses possibilities limitations leverage some representative application scenarios.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Marginal Deep Architectures: Deep Learning for Small and Middle Scale Applications

In recent years, many deep architectures have been proposed in different fields. However, to obtain good results, most of the previous deep models need a large number of training data. In this paper, for small and middle scale applications, we propose a novel deep learning framework based on stacked feature learning models. Particularly, we stack marginal Fisher analysis (MFA) layer by layer fo...

متن کامل

Learning Deep Architectures for AI

Theoretical results suggest that in order to learn the kind of complicated functions that can represent highlevel abstractions (e.g. in vision, language, and other AI-level tasks), one may need deep architectures. Deep architectures are composed of multiple levels of non-linear operations, such as in neural nets with many hidden layers or in complicated propositional formulae re-using many sub-...

متن کامل

Reinforcement Learning with Deep Architectures

There is both theoretical and empirical evidence that deep architectures may be more appropriate than shallow architectures for learning functions which exhibit hierarchical structure, and which can represent high level abstractions. An important development in machine learning research in the past few years has been a collection of algorithms that can train various deep architectures effective...

متن کامل

A Hybrid Optimization Algorithm for Learning Deep Models

Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...

متن کامل

Distributed Training Large-Scale Deep Architectures

Scale of data and scale of computation infrastructures together enable the current deep learning renaissance. However, training large-scale deep architectures demands both algorithmic improvement and careful system configuration. In this paper, we focus on employing the system approach to speed up large-scale training. Via lessons learned from our routine benchmarking effort, we first identify ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ICT Express

سال: 2023

ISSN: ['2405-9595']

DOI: https://doi.org/10.1016/j.icte.2022.08.004